Surface-retained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment.

نویسندگان

  • Tomoko Takaara
  • Daisuke Sano
  • Yoshifumi Masago
  • Tatsuo Omura
چکیده

Algogenic organic matter produced by the excess growth of cyanobacteria in semi-closed water areas causes coagulation inhibition in drinking water production. In this study, hydrophilic substances of Microcystis aeruginosa, which were mainly composed of lipopolysaccharide (LPS) and RNA, were prepared, and the involvement of these cyanobacterial hydrophilic substances in coagulation inhibition was investigated. As a result, it was found that the negatively charged hydrophilic substances with a molecular weight higher than 10 kDa have a significant role in coagulation inhibition. Further fractionation of cyanobacterial hydrophilic substances revealed that surface-retained organic matter (SOM), including LPS, could exhibit a potent inhibitory effect on the coagulation using polyaluminum chloride (PACl), presumably because of the direct interaction of hydrophilic SOM with cations originated from PACl, which could impede the hydrolysis of the coagulant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The formation of haloacetamides, as an emerging class of N-DBPs, from chlor(am)ination of algal organic matter extracted from Microcystis aeruginosa, Scenedesmus quadricauda and Nitzschia palea

Critical algal blooms in lakes increased the concentration of algal organic matter (AOM), significantly altering the drinking water treatment requirements, including coagulation, oxidation and disinfection. This study utilized Microcystis aeruginosa (cyanobacteria), Scenedesmus quadricauda (Chlorella) and Nitzschia palea (diatom) as models to investigate the AOM's primary characteristics and th...

متن کامل

pH modeling for maximum dissolved organic matter removal by enhanced coagulation.

Correlations between raw water characteristics and pH after enhanced coagulation to maximize dissolved organic matter (DOM) removal using four typical coagulants (FeCl3, Al2(SO4)3, polyaluminum chloride (PACl) and high performance polyaluminum chloride (HPAC)) without pH control were investigated. These correlations were analyzed on the basis of the raw water quality and the chemical and physic...

متن کامل

Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL)

Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumptio...

متن کامل

Characterization and predicting DOM treatability by enhanced coagulation

The dissolved organic matter (DOM) plays significant role in water safety due to not only the natural occurrence but also man-induced pollution. To characterize and predict DOM treatability becomes therefore a very important and hot topic. In this paper, enhanced coagulation by four typical coagulants (FeCl3, Al2(SO4)3, polyaluminum chloride (PAC) and high performance polyaluminum chloride (HPA...

متن کامل

Enhanced coagulation for high alkalinity and micro-polluted water: the third way through coagulant optimization.

Conventional coagulation is not an effective treatment option to remove natural organic matter (NOM) in water with high alkalinity/pH. For this type of water, enhanced coagulation is currently proposed as one of the available treatment options and is implemented by acidifying the raw water and applying increased doses of hydrolyzing coagulants. Both of these methods have some disadvantages such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 44 13  شماره 

صفحات  -

تاریخ انتشار 2010